

IMPETUS platform and
micro-services model

 DeliverableID D4.1
 ProjectAcronym IMPETUS
 Grant: 763807
 Call: H2020-SESAR-2016-1
 Topic: RPAS 02 - Drone Information Management
 Consortium coordinator: CRIDA A.I.E.
 Edition date: 09 September 2019
 Edition: 00.01.00
 Template Edition: 02.00.00

EXPLORATORY RESEARCH

EDITION 00.01.00

2

Authoring & Approval

Authors of the document
Name/Beneficiary Position/Title Date

Nicolás Peña BR&TE PMST representative 25/08/2019

Javier Espinosa INECO PMST representative 25/08/2019

Chris Foster ALTITUDE ANGEL PMST representative 25/08/2019

Anna-Lisa Mautes JEPPESEN PMST representative 25/08/2019

Reviewers internal to the project
Name/Beneficiary Position/Title Date

Pablo Sánchez-Escalonilla CRIDA PMST representative and manager 30/08/2019

Approved for submission to the SJU By - Representatives of beneficiaries involved in the project
Name/Beneficiary Position/Title Date

Pablo Sánchez-Escalonilla CRIDA PMST representative and manager 31/08/2019

Nicolás Peña BR&TE PMST representative 31/08/2019

Javier Espinosa INECO PMST representative 31/08/2019

Anna-Lisa Mautes JEPPESEN PMST representative 31/08/2019

Chris Forster ALTITUDE ANGEL PMST representative 31/08/2019

Michael Christian Büddefeld TUDA PMST representative 31/08/2019

Aleksej Majkic TUDA PMST representative 31/08/2019

Rejected By - Representatives of beneficiaries involved in the project
Name/Beneficiary Position/Title Date

IMPETUS PLATFORM AND MICRO-SERVICES MODEL

3

Document History

Edition Date Status Author Justification

Structure Proposal Accepted Chris Foster Creation of the document

00.00.01 Draft All Integration of all
contributions

00.01.00 Final Pablo Sánchez-
Escalonilla

Peer review and review of
executive summary

© – 2018– IMPETUS Consortium. All rights reserved. Licensed to the SESAR Joint

Undertaking under conditions.

EDITION 00.01.00

4

IMPETUS
INFORMATION MANAGEMENT PORTAL TO ENABLE THE INTEGRATION OF
UNMANNED SYSTEMS

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 763807 under European Union’s Horizon 2020 research and innovation
programme.

Abstract

IMPETUS D4.1 summarises the set of services developed by consortium members in work package 4
that will be utilised during the experimental testing outlined in D5.2.

IMPETUS PLATFORM AND MICRO-SERVICES MODEL

5

Table of Contents

Abstract ... 4

Executive Summary ... 6

1 Introduction ... 7

1.1 Purpose of the document... 7

1.2 Intended readership .. 7

1.3 Acronyms and Terminology ... 7

2 Availability Note Forms .. 8

2.1 Model for testing drone-specific weather service ... 8

2.2 Model for testing flight planning management service ... 11

2.3 Model for testing monitoring and traffic information service .. 13

2.4 Model for testing dynamic capacity management services .. 15

3 References ... 17

List of Tables

Table 1: Acronyms ... 7

List of Figures

Figure 1- Service Prototype Model Exercise 1 .. 10

Figure 2- Service Prototype Model Exercise 2 ... 12

Figure 3- Service Prototype Model Exercise 3 ... 14

Figure 4- Service Prototype Model Exercise 4 ... 16

EDITION 00.01.00

6

Executive Summary
This report summaries the models implemented by the consortium partners as part of work package
4:

 Model for testing drone-specific weather service. This model will allow executing Exercise#1
which illustrates how a better knowledge of the uncertainty in the meteorological prediction
will improve the robustness of trajectory-based decision making processes underlying
Mission Plan, Flight Planning and Traffic Management services;

 Model for testing flight planning management service. This model will allow executing
Exercise#2 which investigates how the Flight Planning Management Service can be used as a
controlling entity for flight plan submission and strategic deconfliction. The exercise will
show how to guarantee the successful and safe adaptation of the initial submitted flight plan
when the Flight Planning Management Service interacts with the Local Weather service, the
Aeronautical Information Management service and the Mission Plan Management Service;

 Model for testing flight planning management service. This model will allow executing
Exercise#3 which explores how dynamic information, especially surveillance data and the
positions of obstacles, is gathered, integrated and provided to all the actors involved in the
operation;

 Model for testing dynamic capacity management services. This model will allow executing
Exercise#4 which explores the services which are needed to dynamically managed the
airspace in the execution phase, considering both the standard separation criteria proposed
by CORUS and new separation criteria that take diverse drone capabilities into account.
Furthermore, the exercise will assess how to deal with dynamic changes in airspace
restrictions by determining the safest path for the affected drones to take.

IMPETUS PLATFORM AND MICRO-SERVICES MODEL

7

1 Introduction

1.1 Purpose of the document

The purpose of this document is to allow consortium members to declare the models that have been
created within work package 4 that will be used during the experimental testing.

1.2 Intended readership

This document is intended to be used by IMPETUS members and SJU (included the Commission
Services).

1.3 Acronyms and Terminology

It is necessary to highlight that UTM acronym is used in this document both for the general notion of
a drone traffic management system and for the specific system which will be designed in the USA.

Table 1: Acronyms

Abbreviation Description

AWS Amazon Web Services

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

HTTP Hyper Text Transfer Protocol

MQ Message Queue

QPID Queuing Protocol Identification

REST Representational State Transfer

SSL Secure Sockets Layer

STOMP Simple Text-orientated Messaging Protocol

SWIM System Wide Information Management

UTM Unmanned traffic management (general term)

UTM Unmanned Aircraft System Traffic Management (USA)

EDITION 00.01.00

8

2 Availability Note Forms

2.1 Model for testing drone-specific weather service

Availability Note by MEMBER(S): BR&T-E

Availability Note Date: 31/07/2019

Person Responsible Item’s
Availability: Nicolas Peña Ortiz (BR&T-E)

Deliverable Code: D4.1

Item’s Name and Version: Local Weather Service. Version 1.0

Details of Availability

Step and Maturity Level addressed
by the Item implementation: V01 according to E-OCVM

Documents and their versions used
for the Item’s development:

 D02.02 Drone Information Services;

 D03.01 Architecture and technical requirements.

Item’s Verification related
documentation: D05.01 Experimental Plan

Date and location of the Item’s
Verification: BR&T-E Madrid Laboratory, July 2019

Verification Overall Result:

The Local Weather service prototype has been successfully
developed. This includes both the core modules of the service
and the collection of Docker Containers and middleware
elements forming part of its interface. It has been tested
generating ensembles of 7 iso-probable predictions every 12
hours with two different look-ahead times (24 hours and 72
hours) for an area in in the north west of Spain with a surface of
50Km * 50 Km.

Information on the Content:

PROTOTYPE TECHNOLOGIES
The local weather probabilistic service is composed by many pieces of technology using always cloud
friendly technologies. Technology-wise there are two different blocks: the core weather service and the
infrastructure to offer it to the clients.

The core weather service is written in C++ making use of a parallel execution library that allows it to
scale the number of nodes it is running on to adapt it to the amount of calculations required (size of
volume to cover, frequency of predictions, number of requested iso-probable predictions per run, etc.).
While it is deployed on-premises, all data flows and instances required are compatible with both AWS
and Azure deployments. A minor disadvantage of the present configuration is that the core weather
service component would require some modifications to be deployed in a hybrid cloud environment due

IMPETUS PLATFORM AND MICRO-SERVICES MODEL

9

to the intense communication between different processes.

All elements of the infrastructure to offer the service to the clients are deployed in the form of Linux-
based micro-services that run in individual dock containers, making them very easy to deploy in both
AWS and Azure. They are also ready for utilization in hybrid cloud environments. These are also coded in
C++. The selection of C++ for every development was decided to optimize resource utilization and
performance of the service. It is our intent to further develop this prototype to turn it into a key part of a
future commercial product.

Data and Services flows between the different components are all implemented following the guidelines
of the EUROCONTROL Specifications for SWIM Technical Infrastructure (TI) Yellow Profile, using always
technologies and standards listed there. In our opinion, this profile and its intended uses are perfect for
many of the UTM services to be deployed, including the local weather service. Specifically, our
implementation uses QPID proton AMQP C++ library for the publish/subscribe flows (both topics and
queues) and REST interfaces using a high performance C++ implementation of both the server and client
parts for the request/replay flows.

All data flows support authentication and encryption through SSL Certificates.

PROTOTYPE ARCHITECTURE

The Local Service has many components in this microservice-based prototype:

 Core Weather Service: This is the scalable engine that performs the actual weather predictions.
It is completely isolated from direct contact with the clients and its scaling is controlled by the
Clients Weather Service Gateway Microservice. The Core Weather service identifies overlapping
requests and minimizes the computation required to run all pending simulations;

 Clients Weather Service Gateway Microservice: This is the entry point of any petition of
weather information to the service. It offers a REST interface that the clients use to authenticate
and provide the request parameters (area, time window, variables, etc.). The gateway passes the
job parameters to the Core Weather Service scheduler and instantiates a Client Agent to manage
all communications and data flows between the client and the service;

 Client Agent Microservice: There is one instance of this Microservice per client. It reads all the
AMQP topics coming from the Core weather service that are relevant to the client (their cells are
covered by the volume of interest for the client), transforms and adapts all incoming data to
satisfy the parameters of the specific client and directs the resulting data flow to an AMQP
queue that the client is subscribed to. It also offers a REST interface that allows the client to
control the flow of data (PAUSE/RESTART);

 Sensor Data Gateway Microservice: This is the entry point of any petition of providing real-time
weather data. In offers a REST interface that the clients use to authenticate and start proving
reports. Once they are authenticated, they receive a queue ID that they can use to provide
reports to their assigned Sensor Data Agent;

 Sensor Data Agent Microservice: There is one instance of this microservice per sensor providing
data i.e. one per client providing real-time weather reports. It reads from the AMQP queue in
order to route those messages that are well formed to the appropriate sensor cell topics
(explained below);

EDITION 00.01.00

10

 Node Manager Microservice: This microservice is not visible by the clients but used internally by
the Gateways Microservice to instantiate and terminate instances of Docker Containers of Client
Agents, Data Brokers and Sensor Data Receivers as they are required. There is one instance per
hardware server on the local cluster. When deploying in a cloud environment, this is substituted
by a micro-service that uses the Azure API or AWS API to instantiate the container when
instructed. In both cases the API offered to the Gateway is the same and it is based on REST
services;

 Message Brokers: There are four instances of Message Brokers in the implementation of the
weather service that, while identical in implementation, serve different parts of the data flow:

o Weather Cells Broker: it is topic-based and serves to communicate the client agents with
the Core Weather services. There is one topic per cell covered by the model. The model
feds it periodically and the agent is subscribed to all the topics that contain data from
areas they need to compose the data flow that the client requires;

o Sensor Cells Broker: it is topic-based and serves to communicate the sensor data agents
with the Core Weather services. There is one topic per cell potentially receiving sensor
readings. Different processes of the Core Weather Service are subscribed to this topic
and consume all data from them that applies to each run;

o Client Outgoing Data Broker: it is queue-based and contains one queue per client. The
corresponding agent feeds its queue according to the flow instructions given by the
client;

o Sensor Incoming Data Broker: it is queue-based and contains one queue per client. The
corresponding agent processes all reports coming from its client, parses the data and
places them in the corresponding Sensor Cell Topic.

Figure 1- Service Prototype Model Exercise 1

Remarks, Notes, Guidelines

N/A

IMPETUS PLATFORM AND MICRO-SERVICES MODEL

11

2.2 Model for testing flight planning management service

Availability Note by MEMBER(S): Jeppesen

Availability Note Date: 25/07/2019

Person Responsible Item’s
Availability: Anna-Lisa Mautes (Jeppesen)

Deliverable Code: D4.1

Item’s Name and Version: Flight planning management model. Version 1.0

Details of Availability

Step and Maturity Level addressed
by the Item implementation: V01 according to E-OCVM

Documents and their versions used
for the Item’s development:

 D02.02 Drone Information Services;

 D03.01 Architecture and technical requirements.

Item’s Verification related
documentation: D05.01 Experimental Plan

Date and location of the Item’s
Verification: Jeppesen’s premises, July 2019

Verification Overall Result:

The Flight Planning Management Service prototype has been
successfully developed and tested using synthetic flight plan
data, with approximately 500 flight plans located in an urban
area over a 60 day timeframe, for checking conflicts with other
flight plans stored in the database and notifying the client with
an average response time of less than 0.1307 seconds.

Information on the Content:

PROTOTYPE ARCHITECTURE
The main technologies used for the implementation of the service prototype are Spring Boot and Rabbit
MQ using JAVA 8. The service prototype has been further deployed on the Windows Azure cloud
environment. Figure 1 shows an overview of the architecture of the service implemented. There are four
main components in this microservice-based prototype:

 Flight Plan Microservice: It processes flight plans that are requested for validation from clients
and updates changes in their associated status. Additionally, it stores validated flight plans in a
centralized database. It is implemented in Java Spring Boot 2.1.5, guaranteeing reliable
synchronous communication through a REST API and MongoDB which enables fast access to the
data;

 Conflict Manager Microservice: It validates flight plan trajectories against existing trajectories in
the considered spatial and temporal frame, considering a specific separation minima and a
defined prioritization system. It is implemented in Java Spring Boot 2.1.5;

 Message Broker: It queues flight trajectories requests for validation and prepares status

EDITION 00.01.00

12

messages after the completion of the validation process. For this purpose, a Rabbit MQ Docker
container from the docker public repository was utilized;

 Notification Microservice: It notifies subscribed clients about the result of the validation process
and about emerging updates in the status of the pre-approved flight plans. It is implemented in
Java Spring Boot 2.1.5. Asynchronous communication is done with STOMP over a Web Socket
protocol.

Each service runs in a Docker container. The complete run configuration is maintained in a Docker-
compose script.

Figure 2- Service Prototype Model Exercise 2

DATA FLOW
Figure 2 also indicates the sequence order of the data flow in the service prototype model. The numbers
labelling the arrows in the figure indicate the order in which the drone flight plan data flows in the
nominal work flow process.

The external data input consists of drone flight plans including 4D flight trajectory (3D geometry and
timing), operational context and drone operator information. The generated flight plans are made
available as JSON files. Furthermore, the flight trajectories are modelled with Jeppesen’s trajectory
modelling algorithm.

Firstly, the generated flight plans are submitted through standard HTTP method to the Flight Plan
Microservice (Flow 1). This microservice performs a syntax check-up to the received flight plan and
assigns a flight plan ID, which is communicated to the client using the same communication protocol.
Next, the extracted flight trajectory is forwarded to the Message Broker (Flow 2) where the message is
queued until the Conflict Manager Microservice consumes the message (Flow 3). The Conflict Manager
Microservice extracts the spatial and temporal boundary constraints of the flight trajectory and retrieves
affected trajectories from the flight plan database (Flow 4). After concluding the validation process, the
Conflict Manager Microservice forwards a status message to the Flight Plan Microservice (Flow 5). This
microservice forwards the status message to the Notification Microservice (Flow 6) which publishes the
message back to the client through a web socket connection (Flow 7).

IMPETUS PLATFORM AND MICRO-SERVICES MODEL

13

Remarks, Notes, Guidelines

N/A

2.3 Model for testing monitoring and traffic information service

Availability Note by MEMBER(S): INECO

Availability Note Date: 30/06/2019

Person Responsible Item’s
Availability: Javier Espinosa Aranda (INECO)

Deliverable Code: D4.1

Item’s Name and Version: IMPETUS platform and micro-service model

Details of Availability

Step and Maturity Level addressed
by the Item implementation: V01 according to E-OCVM

Documents and their versions used
for the Item’s development:

 D02.02 Drone Information Services;

 D03.01 Architecture and technical requirements.

Item’s Verification related
documentation: D05.01 Experimental Plan

Date and location of the Item’s
Verification: INECO’s premises, June 2019

Verification Overall Result: Verification successfully passed.

Information on the Content:

PROTOTYPE ARCHITECTURE

This model aims at proving the benefits of a microservice-based architecture in terms of its performance
and capacity to process large volumes of information from multiple sources and providing reliable
information at short time (with a short delay) to end users. A set of requirements related to these
specific functionalities have been identified and implemented using a microservice model-based
architecture, containing the following modules:

 Communications: this module comprises the functionality of collecting the information provided
by a drone operation based on MAVlink protocol (telemetry and MAVproxy as an interface with
the message listener using LTE communications), and shows the final outputs of the platform
sending them to a web client;

 Message Listener: It is in charge of detecting and collecting new messages, processing them to
adapt the content to a specific format and sending them to a gateway to be distributed in the
different microservices included in the platform;

EDITION 00.01.00

14

 Information layer: This layer hands the information around the different modules implemented
in the platform. The messages that are going to be distributed are tagged with a label,
determining if they consist on a Position message or an Alert message;

 Processors: these are the micro-services included in this model. They are supported by an
architecture that is capable of monitoring them, checking their status and executing different
actions to ensure the performance of the system e.g. launching new instances of the services,
balancing the load between them, etc. The key services implemented are:

o Mapper: It processes the inputs from the operation and provides the position and time
stamp associated;

o Traffic information management platform: It is in charge of comprising all the inputs
from the variety of operations, calculating their separation and providing alerts;

o User Interface: It represents the previous information in a user-friendly environment
that must be located in the operation location.

The proposed architecture is shown in the following picture:

Figure 3- Service Prototype Model Exercise 3

The development of this architecture is based on open source applications e.g. IGNITE as a cache,
MongoDB for static information, ActiveMQ as main handler of the information, and Openlayers as the
GIS used in the User Interface.

Remarks, Notes, Guidelines

This exercise has been limited in scope to emphasize the benefits of a microservice-based architecture,
addressing the analysis of the performance of these types of architecture and mimicking the expected
behaviour of the U-Space environment, in which the communications between the Operator and the
Orchestrator shall be ensured (using internet connection in this case) and the main platform to be used
by the Authorities is integrated using cloud-computing systems.

IMPETUS PLATFORM AND MICRO-SERVICES MODEL

15

2.4 Model for testing dynamic capacity management services

Availability Note by MEMBER(S): Altitude Angel

Availability Note Date: 25/07/2019

Person Responsible Item’s
Availability: Chris Forster (Altitude Angel)

Deliverable Code: D4.1

Item’s Name and Version: IMPETUS platform and micro-service model

Details of Availability

Step and Maturity Level addressed
by the Item implementation: V01 according to E-OCVM

Documents and their versions used
for the Item’s development:

 D02.02 Drone Information Services;

 D03.01 Architecture and technical requirements.

Item’s Verification related
documentation: D05.01 Experimental Plan

Date and location of the Item’s
Verification: Altitude Angel’s premises, July 2019

Verification Overall Result:

The marketplace discovery service was successfully
implemented.
The Tactical Deconfliction Service has been successfully
developed and tested using synthetic environmental
information and air traffic data.

Information on the Content:

PROTOTYPE ARCHITECTURE
The main technologies used for the implementation of the service prototype are .NET (C#), SQL and
Azure services. The service prototype has been further deployed on the Windows Azure cloud
environment. Figure 4 shows an overview of the architecture of the service implemented.

The two services developed have a number of in their respective microservice-based prototype:

Marketplace Discover Service

 Service Registration: This service enables the micro-service provider to programmatically
register their component within the market place. They must critically provide a category of
micro-services e.g. U-Space Service Supplier, Supplementary Data Supplier… and additional
service information relevant to a service consumer such that they can make a decision as to
whether the service meets their high level requirement;

 Service Discovery: The service enables the consumer of the micro-service to discover (both
programmatically or though UI) micro-services available that meet their requirement;

EDITION 00.01.00

16

Tactical Deconflictor

 Situational Picture: This component enables the deconflictor service to build an up to date
situation representation of the area in which the microservices is managing deconfliction, taking
into account all available and relevant environmental and flight data;

 Analysis: This component enables the deconflictor to analyse the situational position to
determine conflicts within a management area;

 Command: This component enables to issue commands to the drone or drone pilot to resolve
any conflict and ensure separation.

Figure 4- Service Prototype Model Exercise 4

Remarks, Notes, Guidelines

N/A

IMPETUS PLATFORM AND MICRO-SERVICES MODEL

17

3 References
[1] D03.01 Architecture and technical requirements.

[2] D05.01 Experimental Plan.

EDITION 00.01.00

18

s

